
The Analysis and Mapping of Cyclic Circuits with
Boolean Satisfiability

John Backes, Brian Fett, and Marc D. Riedel

Department of Electrical and Computer Engineering
University of Minnesota

200 Union St. S.E., Minneapolis, MN 55455
{back0145, fett, mriedel}@umn.edu

Abstract—The accepted wisdom is that combinational circuits
must have acyclic (i.e., loop-free or feed-forward) topologies. And
yet simple examples suggest that this need not be so. Prior work
advocated the design of cyclic combinational circuits (i.e., circuits
with loops or feedback paths). A methodology was proposed
for optimizing circuits by introducing cycles at the technology-
independent stage of synthesis.

Efficient synthesis is predicated on efficient analysis. Prior
methods for analysis were based on binary decision diagrams
(BDDs). In this paper, a much more efficient technique is
proposed based on Boolean satisfiability (SAT). Validation is
performed both at a network level, in terms of functional
dependencies, as well as at a gate level, after mapping to a
library. When mapping breaks the validity of a combinational
circuit, SAT-based analysis returns satisfying assignments; these
assignments are used to modify the mapping in order to ensure
that the circuit remains combinational. The effectiveness of the
analysis and mapping algorithms is demonstrated on standard
benchmarks.

I. INTRODUCTION

A. Cyclic Combinational Circuits

A collection of logic gates forms a combinational circuit
if the outputs can be described as Boolean functions of the
current input values only. A common misconception is that
combinational circuits must have acyclic topologies; that is to
say, they must be designed without any loops or feedback
paths. In fact, the idea that “combinational” and “acyclic”
are synonymous terms is so thoroughly ingrained that many
textbooks provide the latter as a definition of the former
(e.g., [15], p. 14; [36], p. 193).

Indeed, any acyclic circuit is clearly combinational. Re-
gardless of the initial values on the wires, once the values
of the inputs are fixed, the signals propagate to the outputs.
The behavior of a circuit with feedback is generally more
complicated. Such a circuit may exhibit sequential behavior,
as in the case of an S-R latch, or it may be unstable, as in
the case of an oscillator.

And yet, circuits with cyclic topologies can be combina-
tional. Consider the circuit in Figure 1. It is combinational
in the strictest sense: it produces the required output values

This research has been funded in part by a grant from the SRC Focus Center
Research Program on Functional Engineered Nano-Architectonics (FENA),
contract No. 2003-NT-1107 and by an NSF CAREER Award, No. 0845650.

a

b

f
1

x

AND

OR

AND

c

d

f
2

x

OR

AND

OR

g
1

g
2

g
3

g
4

g
5

g
6

Fig. 1. A cyclic combinational circuit.

regardless of the prior values on the wires and for any choice
of delay parameters. If x = 0 then g1 produces an output of
0, because 0 is a controlling value for an AND gate. If x = 1
then g4 produces a value of 1, because 1 is a controlling value
for an OR gate. In both cases, the cycle is broken and the
circuit produces definite outputs. Since x must assume one of
these two values, we conclude that the circuit always produces
definite outputs. In fact, it implements two functions that both
depend on all five variables:

f1 = b(a + x(d + c)),
f2 = d + c(x + b a)

(+) denotes OR, (·) denotes AND

Note that the computation of the two functions overlaps. If we
were to implement these functions with an acyclic circuit, we
would need eight two-input gates.



The concept of cycles in combinational circuitry is con-
ceptually similar to that of false paths. Khrapchenko was the
first to recognize that depth and delay in a circuit are not
equivalent concepts: the critical paths of a circuit may all
be false, i.e., they might be blocked by off-path controlling
values; as a consequence, the delay of the circuit might be
less than its topological depth [17]. For a cyclic circuit, we
can say that it is combinational if all of its cycles are false;
the sensitized paths in the circuit never bite their own tail
to form true cycles. Although counterintuitive, cycles can be
used to optimize circuits for delay as well as for area. The
extra flexibility of allowing cycles when structuring functional
dependencies makes it possible to move logic off of true
critical paths and so optimize the delay [28].

B. Prior and Related Work

In an earlier era, theoreticians commented on the possibility
of having cycles in combinational logic and conjectured that
this might be a useful property [13], [16], [33]. Both Mc-
Caw and Rivest presented examples of cyclic circuits with
provably fewer gates than is possible with equivalent acyclic
circuits [21], [30]. We have extended and generalized these
theoretical results. Most notably, we have constructed a family
of circuits with cyclic topologies having half as many gates
as is possible with acyclic topologies [28].

In a later era, Malik discussed analysis techniques for
cyclic circuits [20]. He formulated a symbolic analysis algo-
rithm based on ternary-valued simulation. His approach was
topological, beginning with a transformation from a cyclic
specification to an equivalent acyclic one. Later Shiple refined
and formalized Malik’s results and extended the concepts to
combinational logic embedded in sequential circuits [32].

More recently, Neiroukh and Edwards discussed analysis
strategies targeting cyclic circuits that are produced inadver-
tently during design [9], [26]. Following a strategy similar
to Malik’s, they proposed techniques for transforming valid
cyclic circuits into functionally equivalent acyclic circuits [26].
Their algorithm enumerates partial Boolean assignments that
break the feedback paths in cyclic circuits. The enumeration
continues until enough assignments are found to cover the
entire input space. Based on these partial assignments, acyclic
fragments are assembled into a new acyclic circuit. As a start-
ing point, they presume that the given circuit is combinational
and correctly mapped. The enumeration is explicit and so the
algorithm is potentially very slow, as it searches through an
exponentially large space of partial assignments.

We were the first to suggest a method for synthesizing cyclic
circuits [29]. We implemented the method in a package called
CYCLIFY, built within the Berkeley SIS environment [31].
The tool was successful: it reduced the area of benchmark
circuits by as much as 30% and the delay by as much as
25%. However, being based on SIS, the analysis routines in
CYCLIFY used sum-of-products (SOP) and binary decision
diagram (BDD) representations for Boolean functions. These
representations, from a bygone era in logic synthesis, limited
the size of the circuits that could be analyzed and optimized
effectively.

C. Contributions

This paper aims to bring the analysis of cyclic circuits
into the modern era by exploiting the efficiency of SAT
solving. So-called SAT-based techniques, based on heuristic
solutions to the Boolean satisfiability problem, have proved
very successful for tasks such as logic verification and model
checking [1], [18]. We perform SAT-based validation of cyclic
designs both at a network level, in terms of functional de-
pendencies, as well as at a gate level, after mapping to a
library. When mapping breaks the validity of a combinational
circuit, SAT-based analysis returns satisfying assignments;
these assignments are used to modify the mapping in order to
ensure that the circuit remains combinational. We demonstrate
the effectiveness of the analysis and mapping algorithms on
standard benchmarks. The analysis techniques that we present
here are part of a broader effort that we are pursuing in
developing a SAT-based methodology for synthesis, through
Craig Interpolation [2], [3], [22].

D. Organization

This paper is organized as follows. Section II provides
definitions and describes our circuit model. Section III presents
our SAT-based algorithm for analysis; Section IV gives a
proof of correctness of this algorithm. Section V presents
an algorithm for modifying the mapping of cyclic circuits to
ensure that they remain valid; Section VI gives a proof of
correctness of this algorithm. Section VII presents results on
standard benchmark circuits. Finally, Section VIII discusses
future directions.

II. CIRCUIT MODEL

A Boolean literal is a Boolean variable that is either negated
or not negated. An overbar (x̄) is used to indicate negation. A
plus symbol (+) is used to indicate an OR operation (conjunc-
tion) and multiplication is used to indicate an AND operation
(disjunction). A product is a disjunction of literals and a sum
is a conjunction of literals. A Boolean formula in sum-of-
products (SOP) form is a conjunction of products. A Boolean
formula in product-of-sums (POS) form is a disjunction of
sums. The support set of a Boolean formula is the set of
variables present in that formula.

A partial assignment of a function’s support variables is a
valuation of that function over a subset of its support variables.
In a partial assignment, unassigned variables are assumed to
have value ⊥, defined below. A product is said to cover
a partial assignment if that product evaluates to 1 for that
partial assignment. Similarly, a sum is said to cover a partial
assignment if it evaluates to 0 for that partial assignment. A
prime implicant is a product of minimal size (in terms of
number of the literals) that covers a set of partial assignments.
A prime implicate is a sum of minimal size (in terms number
of the literals) that covers a set of partial assignments.

We work with the digital abstraction of zeros and ones.
Nevertheless, our model recognizes that the underlying signals
are, in fact, analog: each signal is a continuous real-valued
function of time, corresponding to a voltage level. For analysis,
we adopt a ternary framework, extending the set of binary



values B = {0, 1} to the set of ternary values T = {0, 1,⊥}.
Here ⊥ represents either an undefined value, e.g., a voltage
value between logical 0 and logical 1, or else an uncertain
value, i.e., a signal that might be 0 or 1 – but we do not know
which. We say that a variable’s value is definite if it is 0 or
1 and that it is indefinite if it ⊥.

The idea of three-valued logic for circuit analysis is well
established. It was originally proposed for the analysis of
hazards in combinational logic [37]. Bryant popularized its
use for verification [7], and it has been widely adopted for
the analysis of asynchronous circuits [8]. For a theoretical
treatment, see [23]. Malik and Shiple discuss the analysis of
cyclic circuits in this framework [20], [32].

Central to the analysis is the concept of controlling val-
ues. In [28], a formalism is presented for computing the
controlling values of arbitrary logic functions, in a symbolic
context. For simplicity, in this paper we assume that the
network has been decomposed into primitive gates, namely
AND/OR/NAND/NOR gates and inverters. Note that 0 is
the controlling value for an AND gate. Similarly, 1 is the
controlling value for an OR gate.

Our analysis characterizes the functional and temporal be-
havior of circuits according to the so-called “floating-mode”
assumption [8], [11]: at the outset, all wires in a circuit are
assumed to have undefined values, and so are assigned the
value ⊥. This assumption ensures that the analysis does not
infer stability in cases where ambiguous or unstable signals
might persist.

Conceptually, the analysis that we perform for cyclic
circuits is just an algorithmic implementation of the idea
illustrated in the opening section of the paper. All the wires
initially have value ⊥. We apply definite values to the inputs,
and track the propagation of well-defined signal values. Once
a definite value is assigned to an internal wire, this value
persists (so long as the input values are held constant). For
any input assignment, a circuit reaches a so-called fixed point
in the ternary framework: a state where no further updates of
controlling values are possible. This fixed point is unique [8].

We define the validity of a cyclic circuit as follows:
• If, for some assignment to the primary inputs, there are
⊥ values in the fixed point that the circuit settles at, then
the circuit is “not combinational.”

• Conversely, if for every assignment to the primary inputs
there are no ⊥ values in the fixed point that the circuit
settles at, then the circuit is “combinational.”

We sometimes abuse this terminology: we say that specific
input assignments are “combinational” or not, meaning the cir-
cuit computes definite Boolean values for these input assign-
ments or not. Of course, if there are “don’t-care” conditions,
then validity only applies to assignments in the “care” set. We
could adopt a less stringent definition, only insisting that no
⊥ values persist at the primary outputs; this would not alter
our algorithm materially, so here we use the more stringent
definition that no ⊥ values can persist on any of wires in the
circuit, whether these be internal or at the primary outputs.
This more stringent definition produces circuits that eventually
have stable values everywhere. In the less stringent case, the

output value of some gates may oscillate between 0 and 1,
even though the primary outputs remain stable. This could
conceivably have undesired side affects such dynamic power
dissipation.

III. ANALYSIS ALGORITHM

A. Overview

In previous work, we showed that combinational circuits can
be optimized significantly if cycles are introduced [28], [29].
A pivotal step in the synthesis methodology is determining
whether cyclic circuits that are found are indeed valid, that
is to say, they are combinational and implement the requisite
Boolean functions.

This analysis problem is conceptually straight-forward: cor-
rectness is ascertained by following all controlling values as
they propagate through the circuit from the primary inputs –
zeros controlling the outputs of AND gates, ones controlling
the outputs of OR gates, these values controlling other gates,
and so on. Of course, stepping through all possible input as-
signments is not a tractable proposition for real-world circuits:
given n primary inputs, there would be 2n input assignments
to consider.

This is a specific problem but one that shares many proper-
ties with a broad class of problems in logic verification: it has
an affirmative answer if a property holds for all possible input
assignments; it has a negative answer if the property does not
hold for some input assignment. The property – in this case,
whether the circuit produces combinational behavior or not –
is one directly ascribed to logical operations on the circuit –
in this case, how controlling values propagate.

So-called SAT-based techniques, based on heuristic solu-
tions to the Boolean satisfiability problem, have been deployed
very successfully for problems in this vein [1], [18]. Consider
the classic problem in circuit verification: determining whether
two circuits A and B are equivalent in the sense that they
implement the same Boolean function. To solve this problem,
one creates a new circuit C with the outputs of A and B
tied together by an exclusive-OR gate. Then one asks the SAT
question: is there some assignment of input values that satisfies
the Boolean function implemented by C (i.e., for which the
output of C evaluates to one)? If not, then the two circuits
are equivalent. The starting point for SAT-based verification,
then, is a circuit that returns identically zero (UNSAT) for
an affirmative answer to the problem; and not identically
zero (SAT) for a negative answer. The analysis proceeds by
packaging the Boolean function implemented by the circuit as
a formula in Conjunctive Normal Form (CNF). This is passed
to heuristic algorithms known as SAT-Solvers [10], [25]. In
theory, such algorithms can take time that is exponential in the
number of variables to complete. In practice, they have shown
themselves to be remarkably efficient for problems in circuit
verification, handling problem instances containing thousands
of variables with ease.

The main contribution of this paper is a SAT-based method-
ology for verifying whether cyclic circuits are combinational.
The question of whether the circuit is combinational is pack-
aged as a CNF formula through a ternary-valued decompo-



sition of the circuit. The algorithm is described in detail in
Section III. In rough outline, the steps are:

• We find a feedback arc set, that is to say, wires that we
can cut to make the circuit acyclic.

• We introduce new dummy variables at these cut locations.
• We encode the entire computation of the circuit in terms

of ternary-valued logic: zeros, ones and “undefined”
values. These ternary values are encoded with “dual-rail”
binary values: zero is encoded as [0, 0], one as [1, 1], and
“undefined” as either [1, 0] or [0, 1].

• We set up an acyclic circuit that answers the question:
given undefined values for the dummy variables (in the
ternary encoding) is there any input assignment that
produces undefined values (again in the ternary encoding)
at the output? This circuit forms the SAT question.

In the case where the circuit in question is indeed com-
binational, the SAT solver returns an answer of UNSAT. If
some assignment of the circuit’s primary inputs result in
non-combinational behavior, the solver returns an answer of
SAT and it also provides a satisfying assignment. As we
discuss in the next section, we can make use of this satisfying
assignment. The flow of the analysis algorithm is illustrated
in Figure 2.

x y x

SAT-Based 

Analysis

UNSAT: The circuit is 

combinational

x y x

SAT-Based 

Analysis

SAT: The circuit is not 

combinational for 

assignment:

x = 1, y = 0

Fig. 2. An illustration of how SAT-based analysis works. If the circuit is
combinational, the SAT solver returns an answer of UNSAT. If the circuit is
not combinational, it returns an answer of SAT and it provides a satisfying
assignment.

The complexity of the analysis is dependent on the runtime
of the SAT solver. Setting up the circuit for the SAT instance
is comparatively trivial: it entails but a single pass through
the circuit to compute a feedback arc set. The circuit for the
SAT question is larger than the original circuit: for every gate
in the original circuit, approximately six gates are needed to
formulate the ternary-valued encoding. Given the efficiency
of SAT solvers, this is a winning strategy in spite of the
increase in the circuit’s size. In VII, we compare runtimes
on benchmark circuits for this method compared to binary
decision diagram (BDD)-based methods.

B. Algorithm

Given a cyclic circuit, the objective of the analysis is to
produce an acyclic circuit that computes an output value that

is identically zero if and only if the cyclic circuit is valid. This
acyclic circuit will then be fed into a SAT solver; we will refer
to it as the “SAT circuit.”

1) The first step is to find wires that, if cut from the circuit,
would break all the cycles. Such a set can be found
through a simple depth-first search [35].

Bit 0 Bit 1 Value
0 0 0
0 1 ⊥
1 0 ⊥
1 1 1

Fig. 3. Dual-rail encoding scheme for ternary values.

2) The next step is to convert every gate in the circuit into
a corresponding module that operates on the dual-rail
encoded ternary logic. Using the encoding scheme given
in Figure 3, this step is straight-forward. Consider the
encoding for an AND operation on ternary-valued inputs
a and b. We use pairs of inputs for each value: a0 and
a1 corresponding to a, and b0 and b1 corresponding to
b. The outputs are encoded by the functions:

f0 = a0b0 + a1b0b̄1

f1 = a1b1 + a0b1b̄0

Other gates, such as OR, NAND, NOR, etc., can be im-
plemented similarly. The NOT operation is particularly
easy – we simply complement the bit on each rail.

3) Each primary input is simply considered twice to obtain
its dual-rail encoding. This way, if the primary input is
assigned logic 1, the value (11) is fed; if it is assigned
logic 0 the value (00) is fed.

4) At every cut location, we introduce a pair of dummy
variables feeding into the corresponding dual-rail mod-
ule. This allows for the possibility that the value in the
circuit is ⊥, encoded as different values assigned to each
of the dummies, (01) or (10).

5) For every pair of dummy variables, we set up an
equivalence checker: this is a module that evaluates to 1
if and only if the value assigned to dummies agrees with
the value computed by the circuit at the cut location. The
circuit may be computing ⊥, encoded as (01) or (10);
in this case, the equivalence checker evaluates to 1 if
the dummies have different values. Call the output of
the equivalence checker xi for each cut location i. For
dummy variables d1 and d2 and gate outputs f1 and f2,
the logic for the equivalence checker is

xi = d̄1d̄2f̄1f̄2 + d1d2f1f2 +
d̄1d2f̄1f2 + d̄1d2f1f̄2 +
d1d̄2f̄1f2 + d1d̄2f1f̄2.

6) For every pair of dummy variables, we set up a
⊥-checker1: this is simply an exclusive-OR gate on

1As discussed in Section II, we are using the stringent definition of
combinationality here: all gates, not only the outputs, must eventually produce
definite values. For the less stringent definition, ⊥-checkers only need to be
included at the primary outputs of the circuit.



the two dummies; it evaluates to 1 if and only if
the dummies are assigned different values (encoding
⊥). Call the output of the ⊥-checker yi for each cut
location i.

Note that rather than introducing dummy variables,
equivalence checkers, and ⊥-checkers into the SAT
circuit, we could instead append the logically equivalent
clauses to the circuit’s CNF formula representation
to produce the same results. By introducing dummy
variables and equivalence gates into the SAT circuit, we
are implicitly adding these clauses to the CNF formula.
Many modern SAT techniques take advantage of circuit
structure alongside the circuit’s CNF representation in
order to find a result faster [12]. The latter method
would not make use of the structural information that
dummy variables, equivalence checkers and ⊥-checker
add to the circuit.

AND

xi

xn

.

.

.

OR

yi

yn

.

.

.

AND

SAT?g3

g1

g2

equivalence 

checking

checking

Fig. 4. Constructing the SAT instance.

7) Finally, as illustrated in Figure 4, the output of the circuit
is the AND of the AND of the xi’s and the OR of the
yi’s.

Example 1
Consider the circuit in Figure 5, consisting of four NAND
gates. Note that there are four cycles. By inserting dummy
variables d and e, we obtain the circuit in Figure 6 (This
circuit is acyclic). Next, we replace each gate with a dual-rail
version; we feed in pairs of dummy variables, d0, d1, and e0,
e1, corresponding to each of the previous dummy variables; we
double the primary inputs a and b; we add two equivalence-
checkers, producing x0 and x1; we add two ⊥-checkers (i.e.,
exclusive-OR gates) producing y0 and y1; and we add three
logic gates g1, g2, and g3 to form the final output.

This circuit, shown in Figure 7, forms the SAT instance with
six primary input variables: a, b, d0, d1, e0, and e1. We see that
for a primary input assignment of a = b = 1, d0 = d̄1, and
e0 = ē1, ⊥ values remain on each pair of rails on the inputs
of the equivalence checkers, indicating that the inputs to each
are equivalent; so x0 and x1 produce outputs of 1; y0 and y1

produce outputs of 1 as well; so the final output is 1. Therefore,
the SAT instance is satisfiable and the circuit is invalid. Indeed,
a = b = 1 are non-controlling values for the NAND gates, so
this is the outcome that we expect.

NAND

NAND

NAND

NAND

a

b

Fig. 5. A cyclic circuit

NAND

NAND

NAND

NAND

a

b

d

e

dummy

dummy

Fig. 6. The circuit in Figure 5 with cycles broken.

IV. PROOF OF CORRECTNESS OF ANALYSIS

First, we argue that a SAT circuit that evaluates to 1 never
corresponds to a valid cyclic circuit. Indeed, if a SAT circuit
evaluates to 1, then both the gates g1 and g2 are at 1. If g1 is
at 1, then the corresponding values in the cyclic circuit are at
a fixed point; however, if g2 is at 1, then some of the values
in the fixed point are ⊥. By definition, the cyclic circuit is
invalid.

Next we argue that every invalid cyclic circuit translates
into a SAT circuit that evaluates to 1 for a specific input
assignment. Indeed, if the circuit is invalid then it has a fixed
point with ⊥ values on some of the wires of the cut set. (A
fixed point that contains ⊥ values somewhere must also have
these on the cut set.) In the SAT circuit, consider such an
input assignment: assign the dummy values that correspond to
the values from the fixed point; this ensures that g1 is at 1.
Because some of these values are ⊥, g2 is also at 1 and so
the SAT circuit evaluates to 1.

V. MAPPING ALGORITHM

A. Overview

In our synthesis flow, we introduce cycles at the level
of functional dependencies in a Boolean network [29], [2].
These designs are then mapped to gates from a library. Cyclic
designs must be validated both at the level of functional
dependencies and then again after mapping. This is necessary
because mapping sometimes breaks the validity: designs that
are combinational at the functional level get mapped onto



AND

OR

AND

SAT?g3

g2

g1

XOR

XOR

b

a

e0

e1

d0

d1

equivalence 

checking

checking

equivalence 

checking

checking

dual-rail 

NANDs

dummies

dummies

y1

y0

x1

x0

Fig. 7. The SAT circuit corresponding to the cyclic circuit in Figure 5.

designs that are not combinational at the gate level. This was
first observed in [14].

Consider the functions in Figure 8. The three functions form
a cycle: f depends on h, h depends on g, and g depends
on f . The reader can verify that for all assignments of the
primary inputs a and b, the functions f , g, and h evaluate
to definite Boolean values, so we consider this specification
to be combinational. Figure 9 shows gate-level mappings for
the three functions. Since the functional-level specification is
combinational, one might assume that one can simply wire
these gate-level mappings together, as shown in Figure 10.
But this doesn’t work: trying input combinations, we see that
the assignment a = b = 1 does not result in definite values
for the outputs f , g, and h. The individual gate mappings
for the functions are correct, but the resulting circuit is not
combinational.

The problem arises with the mapping for f . At the func-
tional level, input values of a = b = 1 result in f = (h)(h̄) =
0. However, at the gate level, the initial values on internal
wires are not only unknown but possibly undefined. (These
could have voltage values that are not unequivocally 0 or 1
but possibly some value in between.) Here the value of h is
undefined, so the value of f is undefined. As we explain in
Section II, the validity of a circuit can be established with
ternary-valued simulation.

This paper presents a technique for modifying the mapping
of cyclic circuits to ensure that they are combinational, based
on the results of SAT analysis. The circuit in Figure 10 can be
fixed by adding additional logic, as shown in Figure 11. This
additional logic can be generated from a set of input assign-
ments that results in non-combinational behavior. Our SAT-

based analysis provides exactly such satisfying assignments.
For the circuit in Figure 10, SAT-based analysis returns the
satisfying assignment a = b = 1. This assignment is used
to generate the additional logic in Figure 11. The reader can
verify that the circuit in this figure is combinational.

f = (ā + h̄)(b̄ + h)
g = abf

h = a⊕ b + g

Fig. 8. A cyclic specification of three Boolean functions, f , g and h. These
evaluate to definite Boolean values for all assignments of the inputs a and b.

B. Algorithm

For what follows, define an unmapped circuit to be a
functional-level representation, i.e., a collection of Boolean
functions, prior to mapping to gates. Define a mapped circuit
to be a gate-level representation. Suppose that SAT-based
analysis is performed on a mapped circuit and this analysis
concludes that the circuit is not combinational. There are two
possible explanations: either the original unmapped circuit was
not combinational; or the unmapped circuit was combinational
and mapping broke it.

In both cases, SAT-based analysis provides a satisfying
assignment. This assignment lists the values of the primary
inputs and the values of the functions at each cut location. In
this assignment, the primary inputs all have values in {0, 1}
while the functions have values in {0, 1,⊥}. Together, the
values of the primary inputs and the functions describe a state



���� �
f = (ā + h̄)(b̄ + h)��� �

g = abf�� � �
h = a⊕ b + g

Fig. 9. Individual gate mappings for the functions in Figure 8.

a

b

a

a
bb

h
f

g

f = (ā + h̄)(b̄ + h)
g = abf

h = a⊕ b + g

Fig. 10. The circuit obtained by assembling the mappings in Figure 9
together. It is not combinational.

of the mapped circuit that is not combinational: a fixed point
in which some of the functions have value ⊥. With the values
in this assignment, one can go back and evaluate the original
unmapped circuit. If the assignment also corresponds to a state
that is not combinational in the unmapped circuit, then no
mapping of the corresponding functions will work. However,
if the assignment corresponds to a combinational state in the
unmapped circuit, then a problem occurred with the mapping.

a

b

a

a
bb

h

f

g

a b

f = (ā + h̄)(b̄ + h)
g = abf

h = a⊕ b + g

Fig. 11. The circuit in Figure 10 with additional logic. It is combinational.

The satisfying assignment can be used to fix the mapping by
introducing additional logic.

Our method for synthesizing this additional logic is as
follows.

1) Consider the functions at the cut locations in the un-
mapped circuit. For each such function f , create an
empty list of products and an empty list of sums.
Map the circuit to gates. Perform SAT-based analysis
to determine if the mapped circuit is combinational.

2) If the SAT solver returns UNSAT, skip to Step 4. If the
SAT solver returns SAT, proceed to Step 3.

3) For each function f at a cut location, set the variables
in f ’s support set to the corresponding values in the
satisfying assignment. Then:
• Let P be a product with literals corresponding to

variables with definite values in f ’s support set. If
f evaluates to 1 in the unmapped circuit, add P to
f ’s list of products.

• Let S be a sum with literals corresponding to the
negation of the variables with definite values in f ’s
support set. If f evaluates to 0 in the unmapped
circuit, add S to f ’s list of sums.

Add the following clause to the SAT instance created
in Step 1: a clause that evaluates to 0 for the definite
values among the variables in f ’s support set. Solve the
SAT instance again and go back to Step 2.

4) For every function f at a cut location, minimize f ’s list
of products and f ’s list of sums. In the minimization of
the products, select a cover of all the partial assignments
that evaluate to 1; in the minimization of the sums, select
a cover of all the partial assignments that evaluate to 0.

5) After performing this minimization:
• For each product P in f ’s list of products, replace

the output of f by f + P in the mapped circuit.
• For each sum S in f ’s list of sums, replace the

output of f by (f )(S) in the mapped circuit.
Analyze the circuit again. If the circuit is not combina-
tional, return to Step 1. If the circuit is combinational,
then the algorithm is complete.

The intuition behind this approach is that logic can be added
to the circuit that controls the output of a function for a specific
assignment. The assignment is one that, without the additional
logic, would result in a value of ⊥ for the function. The
logic added in Step 5 causes the function to evaluate to a
definite value for all the partial assignments found in Step 3.
Depending on what type of library gates are available, the
implementation of Step 5 might differ; if n-input AND and
n-input OR are not available, then a balanced tree of ANDs
or ORs will have the same effect.

The goal of this mapping algorithm is simply to try to fix
circuits that are “close to correct” by adding a minimal amount
of extra logic. Note that there might not be any unmapped
functions that evaluate to a definite value in Step 3. In this
case, there is no additional logic to add in Steps 4 and 5.
Here the conclusion is that the mapping cannot be fixed; the
explanation is that the functional-level specification was not
combinational to begin with.



Example 2
Consider again the circuit in Figure 10. If SAT-based analysis
is performed on this circuit, the solver will return the satisfying
assignment: a = b = 1, f = g = h =⊥. Apply this assignment
to the unmapped circuit consisting of f , g, and h. Observe that,
for this assignment, f in the unmapped circuit evaluates to 0.
In the mapped circuit, attach an AND gate to the output of f
that evaluates to 0 for the assignment a = b = 1. This fixes the
mapping. The resulting circuit is shown in Figure 11.

In Step 4, the logic for fixing the mapping is minimized.
This is illustrated in the following example.

Example 3
Consider a cyclic circuit that has been mapped to gates. Sup-
pose that the support set of a function f in the circuit is
{a, b, c, d}. Suppose that, after analyzing the circuit, it is found
that the value f computed by the mapped circuit is ⊥ for
the following assignments. Suppose that, for each of these
assignments, f evaluates to 1 in the unmapped circuit:

a b c d Mapped f Unmapped f
0 0 0 ⊥ ⊥ 1
0 0 1 ⊥ ⊥ 1
0 1 0 ⊥ ⊥ 1
0 1 1 ⊥ ⊥ 1

Accordingly, the set of products generated in Step 3 of the algo-
rithm are {āb̄c̄, āb̄c, ābc̄, āb̄c̄}. In Step 4, these are minimized
to ā. In Step 5, the output of f is OR-ed with ā in the mapped
circuit. This fixes the mapping.

In our experience, relatively few satisfying assignments
are ever found for a circuit that needs its mapping fixed.
Accordingly, exact methods such as Quine-McCluskey are a
viable option [27]. Of course, heuristic methods or multi-level
minimization could be used [5], [6]. Note, however, that the
minimization in Step 4 is not traditional minimization in a
binary context. Rather, the requirement is that terms in the
sum cover the satisfying assignments in a ternary context.
This is illustrated in the following example.

Example 4
Consider a cyclic circuit that has been mapped to gates. Sup-
pose that the support set of a function f in the circuit is
{a, b, c, d, e}. Suppose that, after analyzing the circuit, it is
found that the value of f in the mapped circuit is ⊥ for
the following assignments. Suppose that, for each of these
assignments, f evaluates to 1 in the unmapped circuit:

a b c d e Mapped f Unmapped f
1 1 ⊥ 1 ⊥ ⊥ 1
0 1 1 1 ⊥ ⊥ 1
1 0 0 1 ⊥ ⊥ 1

Here the variables a, b, and d, could be primary inputs or they
could be other functions. Clearly, c and e are functions; primary
inputs are never assigned⊥ values. As in the previous example,
these assignments can be minimized to a smaller set. One might
assume that assignments of c and e that are ⊥ can be treated as
if they were either 0 or 1 (i.e., treated as don’t cares). Assuming

fold

1 a
c

1 d

1 b
c

1 d

┴

┴

fnew

┴

┴

┴
┴

Fig. 12. Example 4: A mapping fix without a product covering assignment
a = b = d = 1, c = e =⊥.

this, the set would be minimized to {ac̄d, bcd}. This would
result in the additional logic shown in Figure 12. However, in
Figure 12, we see that when a = b = d = 1 and c = e =⊥, the
output of f is still ⊥. So the fix did not work!

In Step 5 of the algorithm, a list of products is OR-ed with
the output of a mapped function f . This set of products is
meant to cover the partial assignments provided by the SAT
solver, that cause f to evaluate ⊥ when f should evaluate to 1.
Call this set of partial assignments A. Since the list of products
is minimized via two level logic minimization, it only contains
prime implicants [27].

Proposition 1
(Necessary condition.) For each partial assignment in A: the list
of products in Step 5 must contain a prime implicant that eval-
uates to 1 in order for the mapped circuit to be combinational.

Proof: Suppose that, for some assignment in A, no
product evaluates to 1. The output of the OR gate added
in Step 5 remains ambiguous, that is, it evaluates to ⊥: the
function f evaluates to ⊥ for this assignment in the mapped
circuit and every product fanning into the new OR gate either
evaluates to 0 or ⊥. Accordingly, this is a necessary condition.

An analogous proposition and proof can be made about the
list of sums minimized in Step 4 and added to the circuit in
Step 5.

We perform two-level minimization applying Proposition 1:
instead of the standard criterion of covering minterms and
maxterms, we insist on a choice of prime implicants and prime
implicates that covers all the partial assignments. We revisit
the last example, this time adding logic that fixes the mapping.

Example 5
Consider the set of assignments from Example 4. Applying
Proposition 1 during two-level minimization, we obtain the set
of products {ac̄d, bcd, abd}. Unlike the previous example, the
product abd is contained in the minimum representation for the
partial assignments. Figure 13 shows a mapping when product
abd is not removed from the two level minimization. For all
the assignments listed in the table in the previous example, the
newly mapped function behaves correctly in Figure 13.



fold

1 a
c

1 d

1 b
c

1 d

┴

┴
fnew

┴

┴

┴

1 a

1 d
1 b

1

1

Fig. 13. Example 5: A mapping fix that works.

VI. PROOF OF CORRECTNESS FOR MAPPING

We prove the correctness of our mapping algorithm by
demonstrating that 1) it does no harm: it never causes an
output to evaluate to ⊥ that otherwise would not; and 2) it
makes progress: each iteration adds logic that corrects partial
assignments that were causing non-combinational behavior.

Proposition 2
(Does no harm with products.) Each product P that is OR-ed
with f in Step 5 of the mapping algorithm never evaluates to ⊥
when f evaluates to 0.

Proof: Each product P is a redundant product in the
computation of f : OR-ing P with f does not expand the set
of assignments that causes f to be 1. Consider a function fnew,
where fnew = f + P . Because P is redundant, fnew must be
equivalent to f . Therefore fnew cannot evaluate to ⊥ while f
evaluates to 0 (or else fnew and f would not be equivalent).
This implies that P cannot be ⊥ while f is 0.

Proposition 3
(Does no harm with sums.) Each sum S that is AND-ed with f
in Step 5 of the mapping algorithm never evaluates to ⊥ when
f evaluates to 1.

Proof: Each sum S is a redundant sum in the compu-
tation of f : AND-ing S with f does not expand the set of
assignments that causes f to be 0. Consider a function fnew,
where fnew = (f )(S). Because S is redundant, fnew must be
equivalent to f . Therefore fnew cannot evaluate to ⊥ while f
evaluates to 1 (or else fnew and f would not be equivalent).
This implies that S cannot be ⊥ while f is 1.

Propositions 2 and 3 show that each product and each
sum that is OR-ed or AND-ed into the mapped circuit
never produces non-combinational behavior that was not there
before.

Proposition 4
(Makes progress.) Each product (each sum) that is OR-ed
(AND-ed) with the output of the mapped function f in Step 5
results in in a definite output for some assignment that other-
wise produces ⊥.

Proof: Each such product (sum) evaluates to 1 (0) for
every partial assignment found in Step 3. Because each such

product (sum) fans into the input of an OR (AND) gate that
is attached to the output of f , the OR (AND) gate is forced
to 1 (0) for every assignment found in Step 3.

Evidently, this algorithm must eventually halt because there
are a finite number of input assignments. Of course, iterating
through all the input assignments would entail an exponential
number of steps. In practice, we have found that initial map-
pings are invariably “close to correct.” We have not seen in-
stances where there were more than 10 satisfying assignments
that resulted in non-combinational behavior. (Recall that these
are mappings that were produced from cyclic dependencies
that were valid at the functional level.) Furthermore, we use
incremental SAT for this step, so successive calls to the SAT
solver return very quickly [10].

If the number of satisfying assignments in Step 3 becomes
exceedingly large, then a heuristic choice can be made about
when to terminate the mapping algorithm and discard the
current circuit as “unfixable.” Following, say a branch-and-
bound approach, the synthesis routine would then try different
cyclic configurations for functional dependencies and perform
a new mapping [29].

VII. IMPLEMENTATION AND RESULTS

We implemented the algorithms described in Sections III
and V in the Berkeley ABC environment [24]. ABC invokes
the “MiniSAT” SAT Solver [34]. We performed trials on cyclic
circuits produced by our tool CYCLIFY on benchmark circuits
in the IWLS collection [4]. (For circuits with latches, we
extracted the combinational part.) We ran 10 iterations of the
script compress2 on both the cyclic versions produced by
CYCLIFY as well as the original acyclic versions.

In the following tables, the size that is reported is the
number of AND2 gates in an AND-inverter graph (AIG) rep-
resentation. The runtimes for the new SAT-based analysis are
compared to those of the previous BDD-based approach [28].
Trials were performed on an AMD Athlon 64 X2 6000+
Processor (@ 3Ghz) with 3.6GB of RAM running Linux. Only
one core was utilized for the trials.

Table I lists benchmarks that mapped correctly. Table II
lists benchmarks that needed additional logic to correct the
mappings. The numbers reported in Table I include the time to:

1) convert the circuits into their ternary equivalent,
2) convert the result to a CNF formula,
3) run the SAT solver to solve the formula.

(CYCLIFY provided a feedback arc set, so a depth-first search
to find cut locations was not necessary.)

The “Gates” columns report the number of AND2 gates in
the AIG. The “Size Ratio” column is calculated as “Gates
Cyclic / Gates Acyclic.”

The “Delay” columns report the delay for the cyclic and
acyclic circuits. For the cyclic circuits, we use algorithm
presented in [28], based on symbolic event propagation, to
compute the delay. For the acyclic circuits, we compute the
delay as the longest path from the primary outputs to the
primary inputs in the AIG. We assume that nodes in the AIG
(corresponding to AND gates) have unit delay; edges in the
AIG, including those with inversions, have zero delay. The



“Delay Ratio” column is calculated as “Delay Cyclic / Delay
Acyclic.”

The “Time Ratio” column is calculated as “Time SAT /
Time BDD.” As expected, we see that SAT-based analysis
is considerably faster than BDD-based analysis – orders of
magnitude faster for the larger circuits. We note that, for nearly
every benchmark, the cyclic circuits have smaller area and
smaller delay than their acyclic counterparts.

Table II lists benchmarks that needed to have their mappings
corrected. The cyclic version of the circuit table3 was
initially larger than its smallest acyclic representation. For the
circuit dk16, we ran both the acyclic and cyclic versions,
obtained after remapping, through an additional 10 iterations
of compress2. The remapped cyclic circuit still was slightly
larger.

Unfortunately, the set of cyclic benchmarks we have to
test is quite limited. All of the circuits were produced by
CYCLIFY, implemented in the Berkeley SIS framework [29].
As we have noted, the size of benchmarks that CYCLIFY
can tackle is limited by the underlying data structures (SOP
and BDD representations). This paper is part of our effort to
develop more scalable techniques for synthesis.

VIII. DISCUSSION

Synthesizing cyclic dependencies is a specific concept
within a broader topic, synthesizing functional dependencies
– a topic that has not garnered sufficient attention in the logic
synthesis community, in our opinion. BDDs were never up to
task: the problem of constructing BDDs with don’t cares was
never solved. SAT-based techniques are showing much more
promise. In particular, Craig Interpolation is a very interesting
new technique for synthesizing functional dependencies from
the resolution proofs produced by SAT solvers [19]. We
are studying techniques for manipulating and minimizing the
resolution proofs obtained through incremental SAT calls, with
the aim of effecting large optimizations in circuit structure
through changes in functional dependencies [2], [3].

REFERENCES

[1] N. Amla, X. Du, A. Kuehlmann, R. Kurshan, and K. McMillan. An
analysis of SAT-based model checking techniques in an industrial
environment. Correct Hardware Design and Verification Methods, pages
254–268, 2005.

[2] J. Backes and M. D. Riedel. The synthesis of cyclic dependencies with
Craig interpolation. In International Workshop on Logic and Synthesis,
pages 24–30, 2009.

[3] J. Backes and M. D. Riedel. Reduction of interpolants for logic
synthesis. In International Conference on Computer-Aided Design,
2010.

[4] Benchmarks from the 2005 International Workshop on Logic Synthesis
available at http://iwls.org/iwls2005/benchmarks.html.

[5] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli. Multilevel logic synthesis. Proceedings of the IEEE,
78(2):264–300, 1990.

[6] R. K. Brayton, C. McMullen, G. D. Hachtel, and A. Sangiovanni-
Vincentelli. Logic Minimization Algorithms for VLSI Synthesis. Kluwer
Academic Publishers, 1984.

[7] R. E. Bryant. Boolean analysis of MOS circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 6(4):634–
649, 1987.

[8] J. Brzozowski and C.-J. Seger. Asynchronous Circuits. Springer-Verlag,
1995.

[9] S. A. Edwards. Making cyclic circuits acyclic. In Design Automation
Conference, pages 159–162, 2003.

[10] N. Eén and N. Sörensson. An extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, SAT, volume 2919 of
Lecture Notes in Computer Science, pages 502–518. Springer, 2003.

[11] E. Eichelberger. Hazard detection in combinational and sequential
switching circuits. IBM Journal of Research and Development, 9:90–99,
1965.

[12] Malay K. Ganai, Pranav Ashar, Aarti Gupta, Lintao Zhang, and Sharad
Malik. Combining strengths of circuit-based and CNF-based algorithms
for a high-performance SAT solver. In Design Automation Conference,
pages 747–750, 2002.

[13] D. A. Huffman. Combinational circuits with feedback. In A. Mukhopad-
hyay, editor, Recent Developments in Switching Theory, pages 27–55.
Academic Press, 1971.

[14] J.-H R. Jiang, A. Mischenko, and R. K. Brayton. On breakable cyclic
definitions. In International Conference on Computer-Aided Design,
pages 411–418, 2004.

[15] R. Katz. Contemporary Logic Design. Benjamin/Cummings, 1992.
[16] W. H. Kautz. The necessity of closed circuit loops in minimal

combinational circuits. IEEE Transactions on Computers, C-19(2):162–
164, 1970.

[17] V. Khrapchenko. Depth and delay in a network (in Russian). Soviet
Mathematics – Doklady, 19:1006–1009, 1978.

[18] T. Larrabee. Test pattern generation using Boolean satisfiability. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 11(1):4–15, 1992.

[19] C.-C. Lee, J.-H. R. Jiang, C.-Y. Huang, and A. Mishchenko. Scalable
exploration of functional dependency by interpolation and incremental
SAT solving. In International Conference on Computer-Aided Design,
pages 227–233, 2007.

[20] S. Malik. Analysis of cyclic combinational circuits. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
13(7):950–956, 1994.

[21] C. McCaw. Loops in Directed Combinational Switching Networks. PhD
thesis, Stanford University, 1963.

[22] K. L. McMillan. Interpolation and SAT-based model checking. In
International Conference on Computer Aided Verification, pages 1–13,
2003.

[23] M. Mendler and M. Fairlough. Ternary simulation: A refinement of
binary functions or an abstraction of real-time behavior. Workshop on
Designing Correct Circuits, 1996.

[24] A. Mishchenko et al. ABC: A system for sequential synthesis and
verification, 2007.

[25] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. In Design Automation
Conference, pages 530–535, 2001.

[26] O. Neiroukh, S. A. Edwards, and S. Xiaoyu. Transforming cyclic circuits
into acyclic equivalents. IEEE Transactions on Computer-Aided Design,
27:17750–1787, 2008.

[27] W. V. O Quine. The problem of simplifying truth functions. American
Mathematical Monthly, 59:521–531, 1952.

[28] M. D. Riedel. Cyclic Combinational Circuits. PhD thesis, Caltech, 2004.
[29] M. D. Riedel and J. Bruck. The synthesis of cyclic combinational

circuits. In Design Automation Conference, pages 163–168, 2003.
[30] R. L. Rivest. The necessity of feedback in minimal monotone com-

binational circuits. IEEE Transactions on Computers, 26(6):606–607,
1977.

[31] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli. SIS: A system for sequential circuit synthesis. Technical
report, University of California, Berkeley, 1992.

[32] T. Shiple. Formal Analysis of Synchronous Circuits. PhD thesis, U.C.
Berkeley, 1996.

[33] R. Short. A Theory of Relations Between Sequential and Combinational
Realizations of Switching Functions. PhD thesis, Stanford University,
1961.

[34] N. Sörensson et al. Minisat v1.13 – a SAT solver with conflict-clause
minimization available at http://minisat.se/downloads/.

[35] R. Tarjan. Depth-First search and linear graph algorithms. SIAM Journal
on Computing, 1(2):146–160, 1972.

[36] J. F. Wakerly. Digital Design: Principles and Practices. Prentice-Hall,
2000.

[37] M. Yoeli and S. Rinon. Application of ternary algebra to the study of
static hazards. Journal of ACM, 11(1):84–97, 1964.



Runtimes (Mapping Initially Correct)
Benchmark Gates Gates Delay Delay Time Time Size Delay Time
Name Cyclic Acyclic Cyclic Acyclic BDD (s) SAT (s) Ratio Ratio Ratio
bbsse 90 96 5 8 0.08 0.01 0.94 0.63 0.13
bw 110 183 9 9 0.02 < .01 0.6 1 -
clip 113 181 5 9 0.02 0.01 0.62 0.56 0.5
cse 128 152 6 9 0.23 0.01 0.84 0.67 0.04
duke2 309 301 11 11 0.49 0.06 1.03 1 0.12
ex1 205 210 14 8 0.26 0.03 0.98 1.75 0.12
ex6 61 116 8 7 < .01 0.01 0.53 1.14 -
inc 87 115 6 8 < .01 < .01 0.76 0.75 1
planet 381 419 7 9 0.25 0.06 0.91 0.78 0.24
planet1 377 433 7 9 0.13 0.05 0.87 0.78 0.38
pma 167 161 5 8 0.17 0.02 1.03 0.63 0.12
s1 254 339 6 11 4.92 0.05 0.75 0.55 0.01
s298 1806 1823 7 14 106.62 2.07 0.99 0.50 0.02
s386 91 102 5 7 0.02 0.01 0.89 0.71 0.5
s510 189 199 5 9 0.03 0.03 0.95 0.56 1
s526 129 135 9 9 0.01 0.02 0.96 1 2
s526n 130 117 8 10 < .01 0.02 1.11 0.80 -
s1488 431 500 9 9 0.34 0.07 0.86 1 0.21
sse 87 102 5 8 0.02 0.01 0.85 0.63 0.5
styr 344 380 8 10 0.59 0.06 0.91 0.80 0.1
table5 686 639 8 13 50.32 0.28 1.07 0.62 0.01

TABLE I
RUNTIME COMPARISON FOR CIRCUITS WHOSE INITIAL MAPPING WAS COMBINATIONAL

Runtimes (Mapping Fixed)
Benchmark Name Num Added Gates Delay Cyclic Delay Acyclic Num Gates Cyclic Num Gates Acyclic Size Ratio
5xp1 6 8 8 92 97 .94
table3 26 10 13 833 771 1.06
dk16 17 5 9 208 199 1.04

TABLE II
RUNTIME COMPARISON FOR CIRCUITS WHOSE INITIAL MAPPING WAS NOT COMBINATIONAL.


